NAG Toolbox for MATLAB

d02qx

1 Purpose

d02qx is a diagnostic function which may be called after a call to either of the integration functions d02qf and d02qg.

2 Syntax

```
[yp, tcurr, hlast, hnext, odlast, odnext, nsucc, nfail, tolfac, badcmp,
ifail] = d02qx(neqf, rwork, iwork, 'lrwork', lrwork, 'liwork', liwork)
```

3 Description

d02qx permits you to extract information about the performance of d02qf or d02qg. It may only be called after a call to d02qf or d02qg.

4 References

None.

5 Parameters

5.1 Compulsory Input Parameters

1: neqf - int32 scalar

the number of first-order ordinary differential equations solved by the integration function. It must be the same parameter **neqf** supplied to the setup function d02qw and the integration functions d02qf or d02qg.

2: rwork(lrwork) - double array

This **must** be the same parameter **rwork** as supplied to d02qf or d02qg. It is used to pass information from the integration function to d02qx and therefore the contents of this array **must not** be changed before calling d02qx.

3: iwork(liwork) - int32 array

This **must** be the same parameter **iwork** as supplied to d02qf or d02qg. It is used to pass information from the integration function to d02qx and therefore the contents of this array **must not** be changed before calling d02qx.

5.2 Optional Input Parameters

1: lrwork – int32 scalar

Default: The dimension of the array **rwork**.

This must be the same parameter **lrwork** as supplied to d02qw.

2: liwork – int32 scalar

Default: The dimension of the array iwork.

This must be the same parameter liwork as supplied to d02qw.

[NP3663/21] d02qx.1

d02qx NAG Toolbox Manual

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: yp(neqf) - double array

The approximate derivative of the solution component y_i , as supplied in y_i on output from the integration function at the output value of \mathbf{t} . These values are obtained by the evaluation of y' = f(x, y) except when the output value of the parameter \mathbf{t} in the call to the integration function is **tout** and **tcurr** \neq **tout**, in which case they are obtained by interpolation.

2: tcurr – double scalar

The value of the independent variable which the integrator has actually reached. **tcurr** will always be at least as far as the output value of the argument **t** (from the integration function) in the direction of integration, but may be further.

3: hlast – double scalar

The last successful step size used by the integrator.

4: hnext – double scalar

The next step size which the integration function would attempt.

5: odlast – int32 scalar

The order of the method last used (successfully) by the integration function.

6: odnext – int32 scalar

The order of the method which the integration function would attempt on the next step.

7: nsucc – int32 scalar

The number of steps attempted by the integration function that have been successful since the start of the current problem.

8: nfail – int32 scalar

The number of steps attempted by the integration function that have failed since the start of the current problem.

9: tolfac – double scalar

A tolerance scale factor, $tolfac \ge 1.0$, returned when the integration function exits with ifail = 3. If rtol and atol are uniformly scaled up by a factor of tolfac and d02qw is called, the next call to the integration function is deemed likely to succeed.

10: badcmp – int32 scalar

If the integration function returned with **ifail** = 4, then **badcmp** specifies the index of the component which forced the error exit. Otherwise **badcmp** is 0.

11: ifail - int32 scalar

0 unless the function detects an error (see Section 6).

[NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

An integration function (d02qf or d02qg) has not been called or one or more of the parameters **lrwork**, **liwork** and **neqf** does not match the corresponding parameter supplied to d02qw.

This error exit may be caused by overwriting elements of rwork.

7 Accuracy

Not applicable.

8 Further Comments

You should call d02qy for information about any roots detected by d02qf or d02qg.

9 Example

```
d02qf_fcn.m

function f = fcn(neqf, x, y)
   f=zeros(neqf,1);
   f(1)=y(2);
   f(2)=-y(1);
```

```
d02qf_g.m

function result=g(neqf, x, y, yp, k)
  if (k == 1)
    result = yp(1);
  else
    result = y(1);
  end
```

```
t = 0;
y = [0; 1];
tout = 10;
negg = int32(2);
rwork = zeros(97,1);
iwork = zeros(29, 1, 'int32');
neqf = int32(2);
[statefOut, altergOut, rwork, iwork, ifail] = ...
      d02qw('S', int32(2), true, [1e-06;1e-06], [0.0001; 0.0001], false,
    10, 0, int32(0), int32(2), false, true, rwork, iwork);
[t, y, root, rwork, iwork, ifail] =
d02qf('d02qf_fcn', t, y, tout, 'd02qf_g', neqg, rwork, iwork);
[yp, tcurr, hlast, hnext, odlast, odnext, nsucc, nfail, tolfac, badcmp,
ifail] = ...
    d02qx(neqf, rwork, iwork)
ур =
     1
     0
tcurr =
     0
hlast =
     0
```

[NP3663/21] d02qx.3

d02qx NAG Toolbox Manual

d02qx.4 (last) [NP3663/21]